Skip to content Skip to sidebar Skip to footer

Pandas & NumPy Python Programming Language Libraries A-Z™

 

Pandas & NumPy Python Programming Language Libraries A-Z™

Pandas & NumPy Python Programming Language Libraries A-Z™- 
NumPy & Python Pandas for Python Data Analysis, Data Science, Machine Learning, Deep Learning using Python from scratch

  • New
  • Created by Oak Academy, Ali̇ CAVDAR

Welcome to the " Pandas & NumPy Python Programming Language Libraries A-Z™ " Course


NumPy & Python Pandas for Python Data Analysis, Data Science, Machine Learning, Deep Learning using Python from scratch


What you'll learn


  • Pandas is an open source Python package that is most widely used for data science/data analysis and machine learning tasks.
  • Pandas is mainly used for data analysis and associated manipulation of tabular data in DataFrames.
  • Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.
  • Pandas Pyhon aims to be the fundamental high-level building block for doing practical, real world data analysis in Python
  • Numpy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices.
  • NumPy aims to provide an array object that is up to 50x faster than traditional Python lists.
  • NumPy brings the computational power of languages like C and Fortran to Python.
  • Installing Anaconda Distribution for Windows
  • Installing Anaconda Distribution for MacOs
  • Installing Anaconda Distribution for Linux
  • Introduction to NumPy Library
  • The Power of NumPy
  • Creating NumPy Array with The Array() Function
  • Creating NumPy Array with Zeros() Function
  • Creating NumPy Array with Ones() Function
  • Creating NumPy Array with Full() Function
  • Creating NumPy Array with Arange() Function
  • Creating NumPy Array with Eye() Function
  • Creating NumPy Array with Linspace() Function
  • Creating NumPy Array with Random() Function
  • Properties of NumPy Array
  • Reshaping a NumPy Array: Reshape() Function
  • Identifying the Largest Element of a Numpy Array: Max(), Argmax() Functions
  • Detecting Least Element of Numpy Array: Min(), Argmin() Functions
  • Concatenating Numpy Arrays: Concatenate() Function
  • Splitting One-Dimensional Numpy Arrays: The Split() Function
  • Splitting Two-Dimensional Numpy Arrays: Split(), Vsplit, Hsplit() Function
  • Sorting Numpy Arrays: Sort() Function
  • Indexing Numpy Arrays
  • Slicing One-Dimensional Numpy Arrays
  • Slicing Two-Dimensional Numpy Arrays
  • Assigning Value to One-Dimensional Arrays
  • Assigning Value to Two-Dimensional Array
  • Fancy Indexing of One-Dimensional Arrrays
  • Fancy Indexing of Two-Dimensional Arrrays
  • Combining Fancy Index with Normal Indexing
  • Combining Fancy Index with Normal Slicing
  • Fancy Indexing of One-Dimensional Arrrays
  • Fancy Indexing of Two-Dimensional Arrrays
  • Combining Fancy Index with Normal Indexing
  • Combining Fancy Index with Normal Slicing
  • Introduction to Pandas Library
  • Creating a Pandas Series with a List
  • Creating a Pandas Series with a Dictionary
  • Creating Pandas Series with NumPy Array
  • Object Types in Series
  • Examining the Primary Features of the Pandas Series
  • Most Applied Methods on Pandas Series
  • Indexing and Slicing Pandas Series
  • Creating Pandas DataFrame with List
  • Creating Pandas DataFrame with NumPy Array
  • Creating Pandas DataFrame with Dictionary
  • Examining the Properties of Pandas DataFrames
  • Element Selection Operations in Pandas DataFrames
  • Top Level Element Selection in Pandas DataFrames: Structure of loc and iloc
  • Element Selection with Conditional Operations in Pandas Data Frames
  • Adding Columns to Pandas Data Frames
  • Removing Rows and Columns from Pandas Data frames
  • Null Values ​​in Pandas Dataframes
  • Dropping Null Values: Dropna() Function
  • Filling Null Values: Fillna() Function
  • Setting Index in Pandas DataFrames
  • Multi-Index and Index Hierarchy in Pandas DataFrames
  • Element Selection in Multi-Indexed DataFrames
  • Selecting Elements Using the xs() Function in Multi-Indexed DataFrames
  • Concatenating Pandas Dataframes: Concat Function
  • Merge Pandas Dataframes: Merge() Function
  • Joining Pandas Dataframes: Join() Function
  • Loading a Dataset from the Seaborn Library
  • Aggregation Functions in Pandas DataFrames
  • Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes
  • Advanced Aggregation Functions: Aggregate() Function
  • Advanced Aggregation Functions: Filter() Function
  • Advanced Aggregation Functions: Transform() Function
  • Advanced Aggregation Functions: Apply() Function
  • Pivot Tables in Pandas Library
  • Data Entry with Csv and Txt Files
  • Data Entry with Excel Files
  • Outputting as an CSV Extension
  • Outputting as an Excel File
  • Basic Knowledge of Python Programming Language
  • Basic Knowledge of Numpy Library
  • Basic Knowledge of Mathematics
  • Watch the course videos completely and in order.
  • Internet Connection
  • Any device where you can watch the lesson, such as a mobile phone, computer or tablet.
  • Determination and patience for learning Pandas Python Programming Language Library.

Preview this Course

Post a Comment for " Pandas & NumPy Python Programming Language Libraries A-Z™"